12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536 | class Neo4jTransformer:
def __init__(
self,
project_id: str,
uri: str,
username: str,
password: str,
database: Optional[str] = None,
reset_database: bool = False,
):
"""Initialize the transformer with Neo4j connection details"""
self.project_id = project_id
self.driver = GraphDatabase.driver(uri, auth=basic_auth(username, password))
self.database = database
self.reset_database = reset_database
self.layout_schema_path = (
PROJECT_CONFIG.data.output_dir
/ "projects"
/ project_id
/ "layout"
/ "schema.json"
)
self.layout_schema = self._load_layout_schema()
self.header_stack = [] # Track header hierarchy
self.current_file_id = None
if self.reset_database:
with self.driver.session(database=self.database) as session:
session.run("MATCH (n) DETACH DELETE n")
def _load_layout_schema(self) -> Dict:
"""Load layout schema from file"""
with open(self.layout_schema_path, "r", encoding="utf-8") as f:
return json.load(f)
def load_metadata_kg(self, session):
"""
Loads a metadata knowledge graph from a JSON file into Neo4j.
- Creates/merges a :Project node with the given project_id if not existing.
- Loads all 'nodes' into :Node label. Each node's 'properties' are flattened into separate node properties.
- Loads all 'relationships' using a :RELATES_TO relationship.
"""
# 1. Check the metadata_kg file exists.
metadata_kg_path = (
PROJECT_CONFIG.data.output_dir
/ "projects"
/ self.project_id
/ "metadata_kg.json"
)
if not metadata_kg_path.exists():
logger.error(f"Metadata knowledge graph not found at {metadata_kg_path}")
return None
# first check if the project node exists
project_query = """
MATCH (p:Project {id: $project_id})
RETURN p
"""
result = session.run(project_query, project_id=self.project_id)
project_node = result.single()
if project_node is not None:
logger.info(f"Project {self.project_id} already exists. Skipping load.")
return
# 2. Merge the :Project node to ensure the label is created and the node is present.
# If it already exists, we can decide whether to skip or proceed.
project_merge_query = """
MERGE (p:Project {id: $project_id})
ON CREATE SET p.createdAt = timestamp()
RETURN p
"""
session.run(project_merge_query, project_id=self.project_id)
# 3. Load the JSON content
with open(metadata_kg_path, "r", encoding="utf-8") as f:
metadata_kg = json.load(f)
# 4. Insert all nodes
# We flatten node["properties"] into the node so that each key in `properties`
# is stored as a direct property on the node. If you prefer to store them as a single
# JSON string, see the alternative approach commented below.
with timer(logger, "Loading metadata knowledge graph: Nodes"):
for node in metadata_kg["nodes"]:
# node["properties"] must be a dict of {string_key -> scalar_value}
# so that `SET n += $props` can distribute them as node properties.
# Example: for {"ANumber":144050}, this becomes n.ANumber = 144050
node_props = node["properties"] if "properties" in node else {}
# If you want each node's type to be an actual Neo4j label, you can do:
# create_node_cypher = "CREATE (n:" + node["type"] + " {id: $id}) SET n += $props"
# but that depends on your domain model.
# add project_id to node properties
node_props["project_id"] = self.project_id
create_node_cypher = (
"""
CREATE (n:"""
+ node.get("type", "Node")
+ """{id: $id, type: $type})
SET n += $props
"""
)
session.run(
create_node_cypher,
id=node["id"],
label=node.get("type", "Node"), # fallback empty string if no type
type=node.get("type", ""), # fallback empty string if no type
props=node_props,
)
with timer(logger, "Loading metadata knowledge graph: Relationships"):
for relation in metadata_kg["relationships"]:
# cypher query to match the id of the start and end nodes
# and create a relationship between them
create_relationship_cypher = """
MATCH (start), (end)
WHERE start.id = $start_id AND end.id = $end_id
CREATE (start)-[:RELATES_TO $props]->(end)
"""
# add project_id to relationship properties
relation_props = (
relation["properties"] if "properties" in relation else {}
)
relation_props["project_id"] = self.project_id
session.run(
create_relationship_cypher,
start_id=relation["source"],
end_id=relation["target"],
props=relation_props,
)
logger.info(f"Metadata knowledge graph loaded for project {self.project_id}.")
return True
def close(self):
"""Close the Neo4j driver"""
self.driver.close()
def merge_entities(self):
"""Merge entities with same label and text within the same project"""
with self.driver.session(database=self.database) as session:
# First, find duplicate entities (same label, text, and project)
find_duplicates_query = """
MATCH (e1)
WHERE e1.text IS NOT NULL AND e1.method IS NOT NULL // ensure it's an entity
WITH e1.text as text, labels(e1)[0] as label, e1.project_id as project_id,
collect(e1) as entities, count(*) as count
WHERE count > 1
RETURN text, label, project_id, entities
"""
duplicates = session.run(find_duplicates_query)
for record in duplicates:
entities = record["entities"]
# Keep first entity as primary
primary_entity = entities[0]
duplicate_entities = entities[1:]
# For each duplicate
for dup_entity in duplicate_entities:
# First, redirect all incoming relationships
session.run(
"""
MATCH (dup) WHERE elementId(dup) = $dup_id
MATCH (primary) WHERE elementId(primary) = $primary_id
MATCH (dup)<-[r]-()
WITH dup, r, startNode(r) as start_node, primary, properties(r) as props
CREATE (start_node)-[new_r:HAS_ENTITY]->(primary)
SET new_r = props
WITH dup, r
DELETE r
""",
dup_id=dup_entity.element_id,
primary_id=primary_entity.element_id,
)
# Then, redirect all outgoing relationships
session.run(
"""
MATCH (dup) WHERE elementId(dup) = $dup_id
MATCH (primary) WHERE elementId(primary) = $primary_id
MATCH (dup)-[r]->()
WITH dup, r, endNode(r) as end_node, primary, properties(r) as props
CREATE (primary)-[new_r:RELATES_TO]->(end_node)
SET new_r = props
WITH dup, r
DELETE r
""",
dup_id=dup_entity.element_id,
primary_id=primary_entity.element_id,
)
# Finally, delete duplicate node
session.run(
"""
MATCH (dup) WHERE elementId(dup) = $dup_id
DELETE dup
""",
dup_id=dup_entity.element_id,
)
# Create uniqueness constraint if it doesn't exist
try:
session.run(
"""
CREATE CONSTRAINT unique_entity IF NOT EXISTS
FOR (e:Entity)
REQUIRE (e.text, e.label, e.project_id) IS UNIQUE
"""
)
except Exception as e:
# Handle older Neo4j versions or other constraint errors
print(f"Warning: Could not create constraint - {str(e)}")
def transform_and_load(self, input_path: Path):
"""Transform and load data into Neo4j"""
if "layout" not in str(input_path):
logger.warning("Input file is not a layout knowledge graph")
return
layout_json = json.load(open(input_path, "r", encoding="utf-8"))
with self.driver.session(database=self.database) as session:
# Load metadata knowledge graph
self.load_metadata_kg(session)
# Create file node with unique ID
self.current_file_id = f"{self.project_id}_{layout_json['filename']}"
file_props = {
"id": self.current_file_id,
"filename": layout_json["filename"],
"project_id": self.project_id,
}
session.run(
"""
CREATE (f:File $props)
""",
props=file_props,
)
# Reset state
self.header_stack = []
# Process layout structure
self._create_layout(session, layout=layout_json["data"])
# Process entities and relations
for item in layout_json["data"]:
self._process_entities(session, item)
self._process_relations(session, item)
# Merge duplicate entities after all data is loaded
self.merge_entities()
def _find_parent_node(
self, session, current_item: Dict, previous_items: List[Dict]
) -> Optional[str]:
"""Find the appropriate parent node ID based on document structure rules"""
current_label = current_item["label"]
# If it's a header, handle header hierarchy
if current_label.startswith("H"):
current_level = int(current_label[1])
# Update header stack
while (
self.header_stack and int(self.header_stack[-1][0][1]) >= current_level
):
self.header_stack.pop()
if not self.header_stack:
return None # Connect to File node
return self.header_stack[-1][1] # Return last valid header's ID
# For non-header nodes, check schema rules
if previous_items:
prev_item = previous_items[-1]
prev_label = prev_item["label"]
# If previous label can contain current label according to schema
if (
prev_label in self.layout_schema
and current_label in self.layout_schema[prev_label]
):
return prev_item["id"]
# If there's a header context
if self.header_stack:
return self.header_stack[-1][1]
return None # Default to connecting to File node
def _create_layout(self, session, layout: List[Dict]):
"""Create layout structure with proper hierarchical relationships"""
processed_items = []
for idx, item in enumerate(layout):
item_props = {
"id": item["id"],
"text": item.get("text", ""),
"sequence": idx,
"project_id": self.project_id,
}
label = self.sanitize_label(item.get("label", "Item"))
# Find parent node
parent_id = self._find_parent_node(session, item, processed_items)
if parent_id:
# Create node with relationship to parent
query = f"""
MATCH (p) WHERE p.id = $parent_id
CREATE (p)-[:CONTAINS]->(n:{label} $props)
RETURN n
"""
session.run(query, parent_id=parent_id, props=item_props)
else:
# Create node with relationship to file
query = f"""
MATCH (f:File {{id: $file_id}})
CREATE (f)-[:CONTAINS]->(n:{label} $props)
RETURN n
"""
session.run(query, file_id=self.current_file_id, props=item_props)
# Update header stack if needed
if label.startswith("H"):
self.header_stack.append((label, item["id"]))
# Add to processed items
processed_items.append(item)
# Create NEXT relationship with previous node at same level
if processed_items and len(processed_items) > 1:
prev_item = processed_items[-2]
if prev_item["label"] == item["label"]:
session.run(
"""
MATCH (p), (n)
WHERE p.id = $prev_id AND n.id = $curr_id
CREATE (p)-[:NEXT]->(n)
""",
prev_id=prev_item["id"],
curr_id=item["id"],
)
def _process_entities(self, session, item: Dict):
"""Process entities for an item"""
for entity in item.get("entities", []):
entity_props = {
"id": entity.get("id", ""),
"text": entity.get("text", ""),
"confidence": entity.get("confidence", 0.0),
"start": entity.get("start", 0),
"end": entity.get("end", 0),
"method": entity.get("method", ""),
"project_id": self.project_id,
}
entity_label = self.sanitize_label(entity.get("label", "Entity"))
session.run(
f"""
MATCH (p) WHERE p.id = $item_id
CREATE (p)-[:HAS_ENTITY]->(e:{entity_label} $props)
""",
item_id=item["id"],
props=entity_props,
)
def _process_relations(self, session, item: Dict):
"""Process relations for an item"""
for relation in item.get("relations", []):
relation_props = {
"type": relation.get("type", "RELATES_TO"),
"confidence": relation.get("confidence", 0.0),
"project_id": self.project_id,
}
if "source_id" in relation and "target_id" in relation:
session.run(
"""
MATCH (s), (t)
WHERE s.id = $source_id AND t.id = $target_id
CREATE (s)-[r:RELATES_TO $props]->(t)
""",
source_id=relation["source_id"],
target_id=relation["target_id"],
props=relation_props,
)
@staticmethod
def sanitize_label(label: str) -> str:
"""
Sanitize label for Neo4j:
- Replaces spaces and hyphens with underscores
- Converts to uppercase
- Moves any leading numbers to the end of the label
"""
# First sanitize special characters
sanitized = label.replace(" ", "_").replace("-", "_").upper()
# If label starts with a number, move leading numbers to end
if sanitized and sanitized[0].isdigit():
leading_nums = ""
i = 0
while i < len(sanitized) and (
sanitized[i].isdigit() or sanitized[i] == "_"
):
leading_nums += sanitized[i]
i += 1
return f"{sanitized[i:]}{leading_nums}" if i < len(sanitized) else sanitized
return sanitized
def get_document_structure(self, file_id: str):
"""Get the document structure as a tree"""
with self.driver.session(database=self.database) as session:
query = """
MATCH path = (f:File {id: $file_id})-[r:CONTAINS|NEXT*]->(n)
RETURN path
ORDER BY n.sequence
"""
results = session.run(query, file_id=file_id)
return [record["path"] for record in results]
def export(self):
"""Export the Neo4j database to a JSON file that can be reimported later
Returns a JSON structure containing nodes and relationships with their properties,
labels, and types preserved.
"""
with self.driver.session(database=self.database) as session:
# Get all nodes with their labels and properties
nodes_query = """
MATCH (n)
RETURN collect({
id: id(n),
labels: labels(n),
properties: properties(n)
}) as nodes
"""
# Get all relationships with their types and properties
rels_query = """
MATCH ()-[r]->()
RETURN collect({
id: id(r),
type: type(r),
properties: properties(r),
startNode: id(startNode(r)),
endNode: id(endNode(r))
}) as relationships
"""
nodes = session.run(nodes_query).single()["nodes"]
relationships = session.run(rels_query).single()["relationships"]
export_data = {"nodes": nodes, "relationships": relationships}
# Write to file
neo4j_export = (
PROJECT_CONFIG.data.output_dir
/ "projects"
/ self.project_id
/ "neo4j_export.json"
)
with open(neo4j_export, "w") as f:
json.dump(export_data, f, indent=2)
logger.info("Exported Neo4j database to neo4j_export.json")
return export_data
def import_from_json(self, filepath):
"""Import the Neo4j database from a previously exported JSON file"""
with open(filepath, "r") as f:
json_data = json.load(f)
with self.driver.session(database=self.database) as session:
# First create all nodes with unique identifiers
node_mapping = {} # To store mapping between old and new elementIds
for node in json_data["nodes"]:
labels = ":".join(node["labels"])
properties = dict(node["properties"])
# Create node and return its elementId
create_node_query = f"""
CREATE (n:{labels})
SET n = $properties
RETURN elementId(n) as new_id
"""
result = session.run(create_node_query, properties=properties)
new_id = result.single()["new_id"]
node_mapping[node["id"]] = new_id
# Then create all relationships using the new elementIds
for rel in json_data["relationships"]:
rel_type = rel["type"]
properties = dict(rel["properties"])
start_id = node_mapping[rel["startNode"]]
end_id = node_mapping[rel["endNode"]]
create_rel_query = f"""
MATCH (start), (end)
WHERE elementId(start) = $start_id AND elementId(end) = $end_id
CREATE (start)-[r:{rel_type}]->(end)
SET r = $properties
"""
session.run(
create_rel_query,
start_id=start_id,
end_id=end_id,
properties=properties,
)
logger.info(f"Imported Neo4j database from {filepath}")
|